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Abstract

We present a new model of machines and their operation, called temporal automata.
Characteristics of this model include explicit representation of process time, symmet-
ric representation of a machine and of the enviroment in which it operates, the wiring
together of asynchronous automata, and the ability to aggregate individual machines
to form one machine at a coarser level of granularity. We present the mathematical
theory of temporal automata, and provide examples of applying the model. We then
relate temporal automata to traditional constructs such as finite automata and Turing
machines, as well as to more recent formalisms such as statecharts and situated au-
tomata. Finally, we briefly describe a formal language for defining temporal automata,
a compiler for that language, and a simulator for the output of that compiler.
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1 Introduction

In this document we present a new model of machines and their operation. By a ‘machine’
we mean any structure participating in a process, be it electronic, mechanical or biological.
Although we will often use the term ‘computation,’ it should be understood in the general
sense of ‘process.” Many models of computation already exist, and so we should first motivate
the introduction of a new one.

1.1 Motivation and overview

The motivation behind our computational model lies in applications in which time plays a
crucial role, and in which the environment is as important as the computing elements. In
addition, our model is natural for applications that exhibit natural partitioning of computa-
tional elements, as well as a natural hierarchy on these computing elements. Two examples
of such applications are robotics (and real-time systems in general), and Agent-Oriented Pro-
gramming [17] (in which the computing elements are agents exchanging knowledge, beliefs
and commitments).

We are aware of much past and present work that is closely related to our model. Nonethe-
less we believe that our model introduces some novel features, besides being natural and
theoretically sound. It shares with most models some basic features, such as machines hav-
ing state, input and output, and some notion of the current state and output depending on
previous state and input. However, other features of our model distinguish it from previous
models. Some recent models incorporate some of these features, but, to our knowledge, none
incorporate all. The following intuitively-described features of our model are later developed
rigorously.

e Each operation of the machine, be it rotating the camera by 30 degrees or taking a
touch-sensor reading, requires time. Different operations in different machines require
radically different times, leading to asynchrony. Temporal automata explicitly repre-
sent the duration of computation, allowing for different temporal models in different
machines. Indeed, one of our initial motivations was reasoning about real-time systems
in general, and robotics equipment in particular.

e In general, a machine alone does not define a computation; rather it is the machine
coupled with its environment that together define the computation. Furthermore, just
as the machine changes state, so does the environment. The changes in the environment
and in the machine are mutually constraining. Only in the special case of closed
machines is the computation independent of the environment.

o Like the machine, the environment too has structure, governing its state changes. In
fact, the environment is simply another machine. In order for the machine and the
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environment to affect one another, therefore, one must introduce the notion of the
wiring together of machines.

(Although it will play no role in the formal development of the model, there is a
conceptually-useful analogy to kinematics here. In the late 19th century, F. Reuleaux
lay the foundation to modern kinematics by introducing the concept of the kinematic
pair as the basic unit of analysis [13]. The simple underlying observation was that the
possible motions of an object are only defined relative to another object with which it is
in contact. Only relative to such a joint can the (rotational and translational) freedom
of an object be specified. Furthermore, the object and the obstacle are completely
symmetric, both being rigid 3D objects. By analogy, we can now speak about the
informatic pair, a pair of machines, as the basic unit of analysis in computer science.)

e In fact, the machine-environment pair is only a special case of the wiring together of
several temporal automata. In general we have a collection of machines that are wired
together in a mutually constraining fashion. So we can easily model complex systems,
each module of the system being a temporal automaton wired to the others.

(This generalization is perfectly congruent with the analogy to kinematics, since, after
introducing the basic kinematic pair, Reuleaux defined the more general kinematic
chain; however in our context the word ‘chain’ would be misleading, suggesting a
necessarily linear wiring).

e A collection of machines and a wiring among the machines together induce a new ma-
chine. Intuitively, the inputs (outputs) of the new machine are those of the individual
machines that are not wired to an output (input) of a machine in the collection. (Note
that since different machines may have different models of time, there will be some
subtlety in defining the wiring together of arbitrary machines.) Thus one can reason
about a collection of temporal automata as a single system. This introduces many
different levels of granularity, and we can hierarchically decompose complex systems,
starting with a ‘black box’ model and descending to as much detail as is desired.

1.2 Organization of the report

Sections 2, 3 and 4 define the model. Section 5 presents two examples of actual machines and
their descriptions in our framework. Section 6 relates the model to the standard constructs
of finite automata and Turing machines. Section 7 and 8 relate the model to more recent
models that share some of the features of our model. Section 9 presents a formal language
in which to define machines, and briefly describes a program which simulates the behavior
of machines thus defined (a full description of the simulator is provided separately in [9]).



1.3 A sample automaton

Some of the folowing sections are rather abstract and it will help to couple them with a
concrete example. We therefore now define, using the graphical conventions of finite-state
automata, a particular standard deterministic finite automaton (or a Mealy machine), called
M, to which we will make reference later in the text.

Figure 1 : The automaton M

The meaning of this representation is conventional; for example, if the M receives the
signal o while in state A, it will emit the signal 1 and change to state B.

2 Preliminary definitions

2.1 Time structures

Any mode] of machines or computation must clearly define the notion of time, as a com-
putation is a process which evolves over time (indeed, as was mentioned, we use the terms
‘computation’ and ‘process’ interchangeably). For example, the time implicit in finite state
automata theory is a discrete succession of instants. These are the instants in which a new
input signal is received, and based on it a new output signal is emitted and a state-change
occurs.

We want to be able to model machines that can be asynchronous (not operating over
the same periods and with events not happening at precisely the same time), and which can
operate in continuous time or discrete time or a mix of continous and discrete time. In order
to achieve this goal, we allow different components of a machine to be defined at different
instants; thus we need to express the instants at which a component of a machine is defined.
Such a set of instants will be called a ‘time structure.” For example if we want to model
a controller that takes a signal defined at any time and every second emits a command to
an actuator, we need to talk about a continuous time for the input and a discrete time for
the output. We will assume that each computation has a starting point. Thus our time
structures will be finite in the past, and by convention we will take the initial point as 0.
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The need for the last property in our definition of time structure will become clear when we
introduce other concepts. In the following, R* stands for the non-negative reals and N for
the non-negative integers. '

Definition 1 : A time structure is a set T included in or equal to R* such that 0 € T and
Vie RY,sup{z €T |z <t}eT.

This last property means that T is closed on its right.

Examples :

- Rt
-N
-Ns={teR"|t=kx6forsome k€ N}

2.2 Entities

As was said in the introduction, a machine has inputs, internal states and outputs. All
three have the common property of taking values over time. Since the machine may be
asynchronous we need a time structure for each input, internal state or output. Similarly,
inputs, internal states and outputs may differ on the domain from which they take their
values. For example, usually the input of a digitizer takes its values over R and its outputs
take their values over a discrete set. So each input, internal state and output must have a
time structure and a domain of values. Below we define the neutral term entity, which may
in fact be an input, an internal state or an output.’

Consider, for example, the automaton M defined in section 1.3. For M we can define
three entities, an input entity i which takes its values from the set {e, 8,7}, an internal state
entity s which takes its values from the set {A, B,C, D}, and an output entity which takes
its values from the set {0,1}. If we assume that the input arrives at regular intervals we can
take the time structure of the three entities to be equal to N.

An entity is formally define as follows.

Definition 2 : An entity is a pair (T, D) where T is a time structure and D is a domain
(set of values).

Now that we have this notion of entity, we want to be able to speak of the value taken
by this entity over time. The notion is clearly a function from T to D. We call it a trace of
the entity.

1An entity can be thought of as a variable, something that takes different values over time; we did not
use the term ‘variable’ since it is by now a loaded term.
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Definition 3 : A trace of an entity e = (T, D) is a function v: T — D. The collection of
all functions T — D will be denoted by V..

A trace is only defined on the time structure of an entity. Sometimes, however, we need
at time ¢ to know what is the last value an entity has taken. In order to do so, we must
identify the latest time of T which precedes ¢ and take the value of the entity at that time.
For that we define the continuous time eztension of the trace.

Definition 4 : The continuous time extension of a trace v of entity e = (T,D) is the
function T: RY — D defined by:

o(t) =v(sup{z € T |z < t})

So if t € T (the time structure of €) then %(t) = v(t) and otherwise the value of ¥ is the
last value (in time) of v. Notice that by definition of time structures we have sup{z € T |
z <t} € T, and therefore the continuous time extension of a trace is well defined.

2.3 Causal functions and transductions

We now want to define what it means for an entity e to be a function of other entities.
Intuitively that means that the value taken by e is dependent on the values taken by the
other entities.

For example, in the sample automaton M the output value at time ¢ is defined if we
know the value of the input and the internal state at time ¢. The output depends only on
the current input and internal state and its value is related to the value of the input and
internal state by the function defined by the table of figure 2.

input
state | a | B | ¥
A 11110
B 011
C 11110
D 0f{1]0
Figure 2

In this example the output depends only on the current values. This is not always the
case. The outputs of a machine can depend at time ¢ on all the inputs from 0 to ¢. So the
idea of dependence of an entity e on a set of entities I = {11, 15, ...} is related to the existence
of a function from Il;¢;V; to V.. The function associates to a trace for all the entities of I a
trace for e.



We do not, however, allow any arbitrary functions. Intuitively, the temporal evolution of
a machine is constrained by the principle of causality. The output at time ¢ cannot depend
on an input which will arrive after £. So we are interested in only a subset of the functions
from IL;c;V; to V. which we call causal functions and which are defined by:

Definition 5 : A function f from Iic[V; to V., where Vi denotes the set of function from
the time structure Ty to the domain Dy, is a causal function ¢ff:
V(03,5 Vi, o0n)y (V15055 -00) € TierVi, VE € T
[Vix € I, v, = v, on T;, N[0,t]] = f(vi,vs,, ~)(t) = f(v)), v, )(2)

This definition means that when an entity e depends on the set of entities I according
to the causal function f, if you take two histories (i.e. a trace for each input which by f
will define a trace for e ) and if e takes different values at time ¢ for those histories then the
inputs must differ at some time before ¢ in the two histories.

Causal functions are the most general concept that will support the definition of machines,
but in fact they are too general to be of practical use. Instead we now introduce a subset
of causal functions called transductions. The intuition behind the definition is that usually
a part of a machine (an entity) takes as inputs the value of other parts of the machine,
performs a computation for some amount of time (say 6), and outputs the value of the
computation. This transduction is initiated at every instant of the entity’s time structure.
The computation can be characterized by a function from the domains of the inputs to the
domain of the output and the delay . The following definition captures this intuition, as
well as some information about the initialization of the entity and about the way to take the
values of the inputs.

Definition 6 : A transduction is a tuple (e, I, 6, finit, f) where e is an entity (Te, D), I is
a set of entities, § is a nonnegative real, finix is a function from T, N [0,6) to D, and f is a
function from [I;c; Di to D,. The transduction defines a function F from IliefV; to Ve such
that V(v;,, vi,,...) € IielV; ¢

_ ) finir(2) VieT.|t<é
F(viy,vig,...)(t) = { f@(t — 6),75(t - 8),....) VteT.|t>6

In the above definition we provide a function f;,;; which defines the value of the entity
before the entity has performed the first calculation. (Notice that if 6 = 0 then fi,i; plays
no role, and if T. N [0,6) = {0} then only finit(0) plays a role.) Notice also the use of the
continuous time extention function 7; rather than the trace v; itself: an entity need not be
synchronized with its inputs, that is, the instant at which the input’s value is needed in order
to determine the value of an entity need not lie in the time structure of the input. If it does
not then the input value taken is the last value of the input available at the current time.
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Terminology. We will say that a transduction (e, I, 6, finit, f) is from I'to e. If § > 0 then
we will call the transduction a durational transduction.

We have the following property which relates transductions to causal functions:

Proposition 1 : A transduction (e, 1,8, finit, f) where eithere ¢ I oré6 # 0 defines a causal
function from Iien(e)Vi to Ve

(See appendix A for a proof of this proposition.)
Notice in particular that a durational transduction with feedback is still causal.

Example: Let us illustrate the concept of entity and transduction with a small example
of an entity implementing a simple clock, a common device needed to implement features
such as time out. The clock keeps track of the time elapsed since the emission of a signal.
Specifically, the value of the clock is zero until it is activated, and from then on it increases
in increments of ¢, the clock grain size.

We first define the function f of two variables start and clock:

0 if clock = 0 and start =0
clock + ¢ otherwise

f(start, clock) = {

If the entity start emits the signal we want to keep track of, then the entity clock =
(N., R) (where N, = {k«¢for k € N}) and the transduction (clock, {start,clock},¢,(0,0), f)
will implement a clock giving the amount of time elapsed since the emission of the signal
with a precision of € . We will have vioer (K * €) = f(Vstare((k — 1) * €), Veloek ((k — 1) x€)). So
according to the definition of f, as soon as Vstare becomes 1, vgock Will start to increase by €
every € seconds. Then in every history the value of the entity clock can be use to implement
time-out or other time-dependent behavior.

3 Causal systems and temporal automata

We have now all the elements needed to introduce our computational model. We first define
the general notion of causal systems.

Definition 7 : A causal system is a tuple (1,0, f) where I is a set of input entities, O is
a set of output entities and f is a causal function from Ilie1Vi to HoeoV,2.

2je. f is a family of causal functions {f,}oco With fo : Ili¢ Vi =V,




The temporal evolution of a causal system depends on the traces of the input entities.
The environment of a causal system determines the traces of the input entities and thus the
history of this machine.

With each element (v;,, vi,, ...) of ILie/V; provided by the environment we have an history
for the machine. For each history the value of the entity e at timet € T, is v;(t) ife=v¢€ |
and fo(vi,,viy,...)(t) if e=0€ O. '

As was said in the previous section, causal functions are somewhat too general to provide
a useful model of computation. We therefore now define a more specific form of causal
systems, temporal automata.

To define temporal automata we will use the notion of transductions which are special
causal functions. But first we introduce some more notation.

Suppose we have a set E of entities and a set of transductions from a set included in F
to some entities of E such that there is at most one transduction to each entity of E. We
want to define the set of entities on which an entity e depends.

We introduce two relations D and D°. The semantics of eDa is that the transduction to
e is from a set including a. The meaning of eDa is that the transduction to e is from a set
including @ and has a null delay. We denote by D(e) ( D°(e)) the sets of entities standing
in relation D ( D°) with e.

Formally we define the relation D for each entity of E as follows: if there is a transduction
to e, (e, A, 8, finit, f) then D(e) = A, otherwise D(e) = 0.

The definition of DP° is similar: if there is a transduction to e, (e, A,0,finit, f) then
D(e) = A, otherwise D°(e) = 0.

The transitive closure of those relations for the entity e will be denote by A(e) and A%(e) .
If we have Dy(e) = D(e) and the equation Dpi1(€) = Uerep, () D(€'), then A(e) = UnenDnle).
This set A(e) is exactly the set of the entities on which e depends. The definition of A%(e) is
similar but with the relation D° instead of D. The set A%(e) is exactly the set of the entities
on which e depends with a null delay.

We have now all the elements needed to define a temporal automaton.

Definition 8 : An temporal automaton is a tuple (I,S,0,T ) where:

- I is a set of input entities,

- S is a set of internal (state) entities,

- O is a set of output entities ,

- T is a set of transductions with the following properties:

Ve € SUO, T has a unique transduction to e and this transduction
is from a set included in IU S

Yee SUO, A(e) is finite and e ¢ A°(e)
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We will later relate this definition to the general definition of a causal system. Let us
first illustrate this definition by encoding in it the automaton M defined in Section 1.3. As
we said before, the automaton M has three entities:

- the input entity i, (N, {a, 5,7}),
- the internal state entity s, (N, {4, B,C, D})
- the output entity o, (N, {0,1})

The transduction for o is essentially defined by the function of Figure 2 whose name will be
f. In addition we have § = 0 as in finite automata theory the output is simultaneous with
the input. So the output transduction is (o, {i,s},0,0, f).

The transduction for s is essentially defined by the function g of the figure below. If
we assume that initially s has value A , we have for fini; the function which associates A
with time 0. The delay for s is 1 as in the finite automata theory an input produce a state
transition by the time the next input arrives. So the transduction for s is (s, {7, 8}, 1, finit, 9)

input
state | a | B | v
A B|CI|D
B B|C|C
C DID|C
D B{D|B
Figure 3

The temporal automaton evolves according the following equations:
vt € N Vv; € {a,B,7}Y

0o(t) = F(0i(8), 0u(1))

vy(t) = g(vi(t — 1),v,(t — 1)) if £ > 0

v,(0) = A.O

In the definition of temporal automata, the property of the transductions assures that
each internal or output entity does not depend on an infinity of entities and that there is no
loop of zero delay transductions between internal entities. Note that the condition on A°
always holds for an output entity o because A%(0) C JTUS.

However, our definition of temporal automaton allows the transductions to be from S.
This might seem to be a problem because the transductions to an entity of S use S itself.
Actually we have the following proposition which guarantees that because there is no loop
of non-durational transductions a temporal automaton is indeed a causal system.
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Proposition 2 : If M is a temporal automaton (I,S,0,T) then there exists a unique causal
function from I;efVi to leesuoVe which satisfies the transductions equations.

(See appendix A for a proof of this proposition).

Therefore a temporal automaton (I,S,0,T) induces a causal system (1,0, fr) where
fr is the projection of the unique causal function from IL;ic;V; to IleesuoVe which satisfies
the equations of 7 on Il,coV,. We will call this function the function induced by the
transductions of 7.

Before going on, let us define exactly when two systems (temporal automata or causal
systems) are equivalent.

Definition 9 : Two systems M and M' (M and M’ can be either causal systems or temporal
automata) are equivalent iff:

- 3g a one to one mapping from I' onto I |Vi' € I'¢' = g(?")

- 3h a one to one mapping from O onto O' | Vo € O o = h(o)
-Yo € O, V(v;l,v,-z, ) € I;er Vi,

fllt(o)(vg(i’l)a vg(i;)a ) = fo(vil s Uiz )

where f and f' denotes either the causal function (for a causal
system) or the causal function induced by the transductions
(for a temporal automaton) and f, the projection of f on V.

4 Aggregating temporal automata

We now have a complete definition of temporal automata. We have been concerned with
developing a model which is general, mathematically precise, and at the same time is a
natural medium in which to encode actual machines. The mathematical precision will enable
us later to compare our model to classical models of computation. However, alongside the
theoretical issues, we are concerned with how readily actual machines can be encoded in
our model. The definition of temporal automata was designed to correspond directly to our
conceptions of process, and in the next section we provide two encodings of processes in
actual machines. The further development of our model in this section does not increase its
expressiveness, but does make it an even more practical tool for reasoning about machines
and processes.

One property of real systems is that they are typically composed of multiple intercon-
nected machines. For example a robot has sensors, actuators and control modules, each of
which can be considered as a separate machine. The relation between these machines is that
the outputs of some machines are used as the inputs of others. For example, the outputs of
a sensor are used by a control module which transmits its commands to the actuators.

10



This ability to have a modular description of complex systems is essential if we want a
model to be useful. In our framework each module of a system can be represented by a
temporal automaton and the interactions between them are represented by the notion of a
connection. A connection can be viewed as the wiring of the output of a machine to the
input of another machine. '

Definition 10 : A connection from one entity e; to an entity e; is denoted e1 I>e; or ey <l e,
and is the causal function f from V; to Vs which associates to v, € V4, v, = f(v1) defined by
Vt € Te,, v2(t) = T1(t). (This definition implies that D, C D,,.)

Note that the time structures of e; and e; need not be equal; a connection does not imply
a synchronisation between the two entities.

If we have several causal systems we can connect some output entities of some systems to
the input entities of some others. We will speak about a wiring over a set of causal systems
in that case.

Definition 11 : Let My = (I, Ok, fi) be some causal systems. A wiring W over the M,
is a set of connections such that if e e’ € W then 3k3k' | e € O and € € Iy and if
e1 be' €W andey, be €W then e; = es.

A wiring over a collection of causal systems defines a new system, which we will call the
system induced by the wiring. Intuitively, the input entities of this system are all the inputs
which are not involved in the wiring, and the output entities are all the outputs which are
not involved in the wiring. Formally it is defined as follows.

Definition 12 : Let M; = (Ii, Ok, fi) be some causal systems and W a wiring over the M;.
The system induced by the wiring W is the system with input entities UrIi\ {€' | e > e’ € W)
and with output entities UyOx \ {e | e b ¢ € W}.

What will be the properties of the induced system if we connect two causal systems M,
and M; as illustrated in Figure 4?7
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Figure 4 : A simple connection between temporal automata

The following proposition answers this question.

Proposition 3 : If M; = (I1,04, f1) and M; = (I3, 04, f2) are two causal systems and W
is a wiring over My, M,, such that e b ¢ € W implies e € Oy and €' € I, then the sysiem
induced by the wiring W over My and M, is a causal system.

(See appendix A for a proof of this proposition).

What happens in the special case of wiring together temporal automata? Of course,
since they are causal systems the result will be a causal system, but will it be a temporal
automaton? We have the following proposition.

Proposition 4 : If M; = (I1,51,01,T1) and M; = (I, S2,02,T;) are two temporal au-
tomata and W is a wiring over My, M;, such that e b ¢ € W implies e € O, and e el
then the system induced by the wiring W over My and M, is a temporal automaton.

(For a proof of this proposition see appendix A).

Propositions 3 and 4 deal only with unidirectional connections from one causal system
to another. We will be more general: complex systems are usually composed of machines
with much more complicated interactions, including feedback, as in Figure 5.

For such connections of temporal automata we have the following.

Proposition 5 : Let My, M,,...,M, be n temporal automata and W a wiring over M, M,,...,.M,

such that Ve if e b e’ € W then e has a durational transduction. The system induced by W
over My,M,,...,.M,, is a temporal automaton.

12




(See appendix A for a proof of this proposition).

Figure 5 : A more complicated connection between temporal automata

In other words, one can have arbitrarily complex connections and still preserve the prop-
erty of temporal automaton, as long as there are only durational transductions. Actually
this result is a special case of a more general proposition proved in the appendix. That
proposition allows nondurational transductions for the connected output as long as they do
not introduce loops of zero-delay transductions.

The environment of a machine provides the traces of the unconnected inputs. If we
can model the environment itself by a machine, we will obtain a closed system where the
interaction between a machine and its environment will be represented by the connections of
the outputs of the machine to inputs of the environment and the connections of the inputs
of the machine from entities of the environment. The formal definition of a closed system is
the following.

Definition 13 : A set of temporal automata My,M,,...,M,, and a set of connections define
a closed system if for each temporal automaton My of this set, all its input entities are
connected.
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5 Examples

This section will present two examples of temporal automata.

5.1 A mobile robot

This paragraph contains a small example encoding a simple local navigation procedure in
temporal automata. Specifically, we define a temporal automaton M implementing the
behavior ‘Move forward in the middle of the corridor’ for a robot which has two sonars
implemented by M;_sonar and M, _sonar-

All the entities used in this example will have a time structure equal to Ns = {k * 6 for
k € N} where § = 50 milliseconds and the internal and output entities will have a delay ¢.

A sonar is here a very simple machine with one input entity measure and one output
entity distance. Their domains are for measure, {0,1} and for distance, R*. The trans-
duction to distance is (distance, {measure},$,(0,0), f) with:
f(measure) = if measure = 0 then function_sonar() else 0

The robot M has three inputs dj, d. and i. They represent the distance given by the left
sonar, the distance given by the right sonar and the order given to the robot. Their domains
are Dy, = Dy, = Rt and D; = {move, stop}.

The robot has three outputs m,o; and o, which are the order to the robot’s motor, the
order to the left sonar and the order to the right sonar. Their domains are D,, = D,, = {0,1}
and D,, = {forward, backward, left, right, stay}.

The transduction to o; is (o;, {z}, 6, (0,0), g) with:
g(2) = if ¢ = move then 1 else 0.

The transduction to o, is similar (o, {1}, 4, (0,0), g).

The transduction to m is (m, {z,d;, d,},é,(0,0), k) with:

stay if : = stop

left if i =moveand d;—d, > A

forward if i =moveand —A<dj—d, <A
right if i = move and d; — d, < —A

h(i,dy, dy) =

With A = 20 centimeters.

The wiring W = {0, b measurer_sonar, 01 > MEASUTEI _sonar, distancer sonar B dr,
distance sonar B> di} over M, Mi_sonar and M, _sonsr induces a temporal automaton. This
temporal automaton implements the behavior of a robot moving in the middle of a corridor
according to the data provided by two sonars.
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We can show that for this robot we have | d; — d, |< A + 48 * d’ * v where d' is an upper
bound for the variation of the distance from the wall to the axis of the corridor, and v is the
forward speed of the robot. So if for example, d’ = 0.3 and v = 1m.s™!, we have | d; — d, |<
26 centimeters. Then if the corridor is 52 centimeters wider than the robot, the robot is
guaranteed collision-free motion.

a trajectory of the robot

This temporal automaton is very simple because of the simple environmemt, sensors and
effector being modelled. Modelling more realistic hardware and environments would require
more entities and more complex transductions, of course.

5.2 A digital watch

This example is borrowed from [5] in which Harel models the behavior of a quartz multi-
alarm watch in the Statecharts formalism (see discussion in section 7). We model the same
device as a temporal automaton. The watch is depicted in the following figure.

a,D :Ib

All | Al2 |Chm| Pwr

12:31

The watch has a main display area and four smaller ones, a beeper, and four control
buttons denoted here a,b,c and d. It can display the time (with am/pm or 24 hour time
modes) or the date (day of month, month, day of week), has a chime (beeps on the hour if
enabled), two independent alarms, a stopwatch and weak battery blinking indication.

The four smaller displays indicate respectively if the alarml is enabled, if the alarm?2 is
enabled, if the chime (beeps every hour) is enabled and if the power is weak.
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The main display usually indicates the time. An “event” d makes it displays the date.
A loop time,alarml, alarm?2, chime, stopwatch and time is covered when events a occur.
If the main display is in a different mode than time for more than 2 minutes it returns
automatically to time. In the mode time, if you depress ¢ for more than 2 seconds you
switch to the mode update.

The mode update is a loop second, minute, 10 minutes, hour, month, date, day, year,
mode which you can cover with ¢ events. In each of the modes a d event increments your
time or date by one unit of the mode modulo the next mode. In the update mode an event
b returns to the time mode.

If your are in alarm1 or alarm2 modes, an event d change the status of the alarm (enabled,
disabled). An event c puts the watch in a mode to update the time of the alarm. The loop
is hour, 10 minutes, minute and is covered with event c¢. An event d in the update mode
increments your time of alarm by one unit of the mode modulo the next mode. An event b
returns to the mode alarm1 or alarm?2.

In the chime mode an event d enabled or disabled the beep every hour.

In the stopwatch mode an event b starts or stops the chronograph. An event d resets it
to zero.

The beeper beeps for 30 second if an alarm is enabled and the time is equal to the time
of the alarm. During this time the depression of any button stops the beeper. It also beeps
for 2 seconds every hour if the chime is enabled.

After this informal description of the watch (slightly different from that in [5]), we will
now outline the main principles used for building a temporal automaton with the watch’s
behavior. The complete definition of the temporal automaton can be found in Appendix B.

There are 5 input entities which are all defined on continous time (a time structure equal
to R*), a,b,c,d and power. The first four represent the status of the four buttons and their
value will be 1 if the button is depressed and 0 otherwise. The last one is the the information
from the battery and can have 3 different values {on,weak, dead}.

Each of the internal and output entities will be defined on N, = {k*e¢ | k € N} where
¢ = 10 milliseconds is the precision of the watch and the minimal time between changes in
the watch.

There are 7 output entities. The delay of all the output entities will be 0 since as will be
seen they are only transcriptions of internal entities. Four of the output entities will be orders
for the display of the four small areas of the watch. There are all,al2, chime and d_power.
The value of the first three will be {on, of f,none} and for the forth {good, weak,none}. The
fifth output is light which will take its value in {on,of f}, the sixth is beeper with values in
{beep, silent} and the last is display which will represent what to display on the main area
of the watch.
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- The internal entities can be divided in 4 groups. The first contains entities which keep
track of the different modes of the watch. These entities are main_mode, update_mode,
time_mode, chrono_mode, updall _mode and updal2_mode.

The second group contains alarml_stat,alarm2_stat and chime_stat which encode the
status of these features. Their domain will be {enabled, disabled}.

The third group is used to implement the different time-out behaviors. Such entities will
be 2s,30s and 2min. Their domain will be R.

The last group contains entities which are data. They are time, date, all time, al2_time
and chrono. Their domain is R and they will be used by the output entity dzsplay to draw
the main area of the watch.

The entities of the first group encode the different mode of the watch. For example,
main_mode will take a value in {tim, dat,update, alarml, alarm2, updalarml, updalarm?,
chime, stopwatch}. If main_mode has value update it means that we are updating the time
or the date of the watch. If it has value stopwatch, it means that the stopwatch is being
displayed and that the inputs on the buttons are interpreted as orders to the stopwatch. Its
transduction is (mainomode, {main_-mode,a,b,c,d,2s, 2min, update_mode, updall mode,
updal2_mode}, €, (0,tim), f). The function f changes the value of main_mode for each event
a according to the previous value of main_mode. It uses the entities 2min and 2s to imple-
ment the return in the time mode after 2 minutes in another mode and the condition for
entering the update mode. According to the previous value of main_mode, f interpretes the
actions on buttons b and c.

The entities of the second group, alarml_stat, alarm2_stat and chime_stat change value
if the entities keeping track of the different modes are in the appropriate mode and the right
button is depressed (d actually).

The entities of the third group are similar in principle to the entity implementing a
clock presented in section 2.3. They are set to a particular value on some conditions then
incremented (or decremented) by € at each cycle. When they reach a particular value they
activate a change in other entities.

The entities of the fourth group store data. The entity time for example, stores the hour,
minute, second, hundredth of second of the current time. In normal mode it is incremented
by € every cycle. In the update mode its value is changed according to the events on buttons
c and d. The entity all_time stores the time when the beeper will be activated if alarm] is
enabled. It is set up in the mode updall with buttons ¢ and d.

The output entities are only transcription of internal entities. For example for the four
small displays of the watch, the output will be the value of the corresponding mode internal
entity if the power is not dead. The beeper will be activated if the value of {2me matches the
value of all_time and alarml is enabled, or time matches al2_time and alarm?2 is enabled,
or time is on the hour and chime is enabled. For the main display, the output will be the

17




value of either time or date or chrono or all_time or al2_time, depending on the value of
main_mode. '

6 Relation to automata theory

While our model relies on explicit representation of time, classical automata theory hides
the notion of time in that of transition. We believe that an explicit expression of time has
several advantages when one is concerned with modelling real-time, real-world systems such
as robots. This is consistent with the recent trend in the program verification community
to incorporate real-time notions into the language for reasoning about the computation (cf.

[31)-
At the same time it is important to understand the relation between our model and foun-

dational automata-theoretic models. Our model is obviously an extention of finite automata,
but in fact it is a very radical extension. In particular, we have the following property:

Proposition 6 : Any deterministic one-tape Turing machine (abbreviated DTM) can be
simulated by a temporal automaton.

(See appendix C for a proof of this proposition).

So our model of a temporal automaton has at least the same computational power as a
deterministic one-tape Turing machine.

The reverse is not true since our model can represent computation over continuous time,
on infinite domains and with an infinite number of entities. However, in most practical
cases, we use our framework to model systems where continuous domains or time can be
approximated by discrete domains or time. In those cases if the functions involved in the
transductions are computable, there exists a deterministic Turing machine able to compute
the value of any entity at any time.

7 Relation to some concurrency models

The specific features of our model such as concurrency and composition make it potentially
closer in spirit to some of the more recent computational models geared towards concurrent
computation. We briefly discuss three of the better known ones, but we aware are of the
fact that a large number of other models exist. We are familiar with some of them® but,
we are sure, not all. One purpose of this document is to solicit comparisons with other

3Partly through conversations with David Dill, which we gratefully acknowledge
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models which we have not mentioned. The models we do discuss here are Hoare’s model
of Communicating Sequential Processes, or CSP [7], Milner’s Calculus of Communicating
Systems, or CCS [10}, and Harel’s Statecharts [6].

CSP is a mathematical model based on the concept of processes. A process is a set of
traces, a trace being a finite sequence of symbols denoting events.? A trace represents a
possible behavior of a process from its beginning up to some moment in time.

The main characteristics of CSP are:

One can define the sequential combination and summation of processes.

You can prefix a process by an event and define transformation on the events alphabet.

o The parallel combination of processes is defined with conditions on the projections of
its traces on the processes events alphabet.

The communication between two processes is synchronous.

The data structures are implemented via processes.

The main concept of CCS is an algebra of behaviors. These behaviors are built from a
set of names representing the possible events and the operations defined on this algebra.

Briefly, the major features of CCS are:

e Each name of an event is associated with an input event and an output event. The
communication between behavior is synchronous.

e One can define the relabelling, the restriction of a behavior and add a prefix to a
behavior. One can define the summation and the parallel composition of behaviors.

o Behaviors are defined usually by equations, often recursive, which may contain pro-
gramming constructs such as conditionals.

o The concept of a communication tree is defined as an interpretation of behaviors, and
what it means for a set of behaviors to be observation equivalent is defined.

We have not carried out a formal comparison between temporal automata and either
CSP or CCS, but several important differences stand out. Chief among these differences
is the treatment of time. Both CSP and CCS rely on the basic notion of ‘sequence’; the
only temporal information representable is precedence. Furthermore, in both models all
communication is synchronous, unlike in our model. On the other hand we share with both

4The general sense of ‘trace’ is the same as in our model, but the specifics are different. In particular, in
CSP (and CCS) there is no temporal information in a trace other than the order among events.
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models the property that any communication of information requires that the participants
in the communication be named.

CSP and CCS are also different from temporal automata in that they are more “obser-
vation based” in spirit; the emphasis is on describing the various stages of the processes, not
the causal mechanism generating the process.

In this sense temporal automata are closer to Statecharts. Statecharts are a visual formal-
ism for the behavioral description of complex systems. They extend classical state-diagrams
in several ways, while retaining their formality and visual nature. Like finite state machines,
Statecharts are based on states, events and conditions, with combinations of the latter two
causing transitions between the former. Both states and transitions can be associated in
various ways with outputs events, called actions, which can be triggered either by executing
a transition or by entering, exiting or simply being in a state. The system’s inputs are thus
the external events and its outputs are the external actions.

The main features of Statecharts are:

1. They allow hierarchical description of the states. One can use any combination of zor
and and between states as a new state.

2. One can specify default entrance or historic entrance into a zor state.
3. One can specify delay or timeout to exit from a state.

4. One can encode actions and conditional entrances.

The internal states, the wiring and the hierarchical description of Statecharts are very
similar to those in temporal automata. In fact, there is a straightforward translation of
any Statechart into a temporal automaton. Furthermore, there exists a graphic interface
to describe complex systems with Statecharts which is similar in spirit to the simulator for
temporal automata described in section 9.

The main difference between Statecharts and temporal automata again has to do with
the representation of time; whereas we allow arbitrary temporal structures and asynchronous
communication, Statecharts assume a discrete and synchronous structure of time.

8 Relation to some recent models in Al

Several researchers in Al have recently employed models of concurrent computation, driven
by an interest in representing physical agents embedded in a physical environment. Indeed,
this has also been our motivation, and temporal automata is intended as the target language
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for the compiler in the AOP project [17]. Unlike in our model, most Al researchers have
adopted a standard circuit-like framework.

One example is Rosenschein and Kaelbling’s situated automata [14]. The main purpose of
situated automata is to design systems with provable epistemic properties and with provable
reaction times. The applications of this formalism are the conception of highly reactive
artificial-intelligence systems such as intelligent robots. The component of situated automata
relevant to the present comparison is the low-level machine description, which is done in
terms of switching circuits. The elements of the circuit are either functional elements which
compute instantaneously a function of their inputs, or delay elements which delay their input
by a constant time. Thus in that framework, the model of time is that of the integers, and
all connections are synchronous.

Similar properties are true of Nilsson’s action networks {12]. ACTNET is a language
for computing goal-achieving actions that depends dynamically on sensory and stored data.
ACTNET programs can be used to control the actions of a robot in a dynamic environment.

The ACTNET language is based on the concept of action networks [11]. An action
network is a forest of logical gates that select actions in response to sensory and stored data.

The elementary unit of an action net implements a logical and gate as illustrated in figure
6.

- Purpose —
Precondition— AND Action

Trigger ——

figure 6 : action unit

In contrast to our framework, ACTNET allows only logical and entities, all units are
synchronous, and all act instantaneously and simultaneously (i.e. their output is updated
as soon as their inputs change). In a way, ACTNET is a synchronous language similar to
Esterel [1].

ACTNET does not represent temporal behavior, nor does it permit loops among action
units. Thus to implement feedback loops one must rely on the environment which updates
the sensory and stored data; ACTNET itself does not control those data.

In [4] Genesereth discusses a continuum of agents. His main interest lies in high-level,
informable agents capable of acting on partial plans. In our context, however, most relevant
are the lowest-level agents, which are each a finite automaton, and which interact by con-
necting the input of one agent to the output of another. Exactly as in our model, Genesereth
accords equal status to the agent and the environment, treating the environment as simply
another agent. Although he does not pursue it, it is possible in his framework to aggregate
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agents and create a hierarchical structure. The temporal dimension, however, is absent in
the finite-automata representation.

As a final example from AI, we mention Brooks’ creatures [2]. Brooks has explored the
thesis that natural intelligence evolved in a bottom-up fashion, and that artificial intelligence
should be created in the same way. For this purpose he has developed a so-called subsumption
architecture, in which simple behaviors are encoded and then used to create more complicated
ones. All behaviors are implemented in a structure that is essentially a switching circuit. In
particular, no timing information is present and all communication is synchronous.

9 A programming language based on temporal au-
tomata

Our framework can be presented as a language for the description of machines. There are
two advantages to presenting our model as a programming language. First of all, we can use
this language to describe temporal automata and have them interpreted and simulated on
a computer. We can also use this language as a target language for the translation of high
level specifications of an agent. By this process we tranform a high level specification into a
reactive system composed of temporal automata.

To study and try to achieve an automatic translation we need a formal definition of this
language for the descriptions of temporal automata.

This language is defined in a BNF by the following grammar. In the BNF notations used
here, { E }* means one or more occurrences of E; { E }* means zero or more occurrences of
E, and [ E ] indicates that E is optional. Reserved words are written in boldface.

<program> = { <declaration> }* { <def machine> }*
{ <def connection> }* { <def input> }*
<def machine> ::= machine <ident> input { <def entity>

}#
state { <def entity> <dependence>}*
output { <def entity> <dependence>}*

<def connection> := connect (<ident> <ident>) (<ident>
<ident>)

<def entity> u= entity <ident> <type> <t structure>

<declaration> u= <decl type>

<decl type> u= type <ident> <type>

22



<type>

<type name>
<t structure>

<dependence>

<functionT>

<function>
<code-function>
<object>

<integer>
<real>

<boolean>
<character>
<digit>
<ident>
<letter>

<type predefined>

|<type name>

[list(<type>)

|( { <type> }*)

<ident>

timeN | timeR | timeD <real>
| time <code-function>

depend <ident> ({ <ident> }¥)
<functionT> <function>
<code-function>

|(( 0 <object>) {(<real> <object>)}*)

({ <ident> }*) <code-function>
a function written in Lisp
<integer>

| <real>

| <boolean>

| <character>

| ({<object> }*)

[-] <digit> {<digit>}"

[] <digit> {<digit>}".<digit>
{<digit>}*
true | nil

any printable character
0|...]9

<letter> {<letter> | <digit>}*
al...|lz|A]...]Z

The semantics associated with this grammar in terms of temporal automata is rather
clear from the language. For example, a <function> is the definition of the function f of
a transduction. The key word connect introduces 4 identifiers which are the names of the
machine and the entity from which the connection starts and the names of the machine and
the entity which are been connected. (The complete semantics are not given in the report).

A program which simulates the temporal evolution of temporal automata has been writ-
ten. This simulator takes a description of temporal automata written in the language de-
scribed above. Then it simulates the evolution of the machine given a trace for inputs from
the environment. The environment inputs can be either given interactively by the user or
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defined by a function.

Of course, time in the simulator is discrete but the user can use any precision for time
he or she needs. Except for this restriction, that domains and time structures are discrete,
all the features of the model are implemented in the simulator.

The interface of the simulator allows the user to define temporal automata interactively
instead of describing them in the language. When a machine is defined the user can simulate
the machine several times for different traces of the inputs from the environment.

The simulator is written in Lisp and the user has access to this language to define
customizations or special interfaces for a particular simulation.

For more details on this simulator see [9].

10 Summary and concluding remarks

In this report, we have introduced a framework for describing machines and related it to
other work in the area. We believe this to be a powerful formalism in which to represent the
low-level specifications of agents. The main advantages of this model are: -

e Time is explicit. This feature allows us to represent asynchronous machines as well as
machines with continuous or discrete time. We can represent all temporal phenomena
directly in our framework.

e Each entity has a delay. This provides a realistic way in which to represent computation
by hardware. As each entity has a delay, we can represent by an entity both very fast
and simple computations and very long and complex ones.

e Modularity. One can define several machines, connect them and consider again the
whole system as a machine. This capability to define smaller systems and then assemble
them together is very useful when you want to represent large complex systems.

e Several levels of abstraction. Our framework is convenient for representing different
levels of abstraction of a system. One can express by an entity either very basic
operations like boolean functions or complex one. One can therefore treat a machine
as a black box, and then selectively refine the model.

We note that our computational model deals only with deterministic systems whereas
most existing models include also nondeterministic behaviors. This is not accidental, as we
aim in our model to capture the full causal mechanism, whereas nondeterminism reflects
ignorance of some aspects of the machine. However, although we have so far had no reason
for doing so, it is easy to define either nondeterministic or stochastic versions of our model,
by modifying the definition of a transduction.
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Further theoretical investigations of temporal automata are possible, including compar-
isons with other models and investigation of complexity issues. Our own interest lies in
testing the practical usefulness of the model. In particular, we intend to use it as a target

into which to compile cognitive agent programs within the Agent-Oriented Programming
framework.
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Appendix A

Proposition 1 : A transduction (e, 1,4, fimit, f) where either e & I or 6 # 0 defines a causal
function from Iien(e}Vi to Ve

Proof : Let us first treat the trivial case where e ¢ I.
Y(Viy, Vigy oo ), (Vi Vhyy ) € it Vi vte T,
either ¢ < 6 and then v(t) = finit(t) = vi(t)
or t > § and then
if Vir € I, v;, = v}, on T;, N[0,t] then Vix € I, T3, = v}, on [0,1]
50 ve(t) = f(T(t — 6),75(t — 6),....) is equal to

vi(t) = f(o],(t = 6),v},(t - §), ")
Let us suppose now that e € I and 6 > 0

Let us show that the transduction defines a function h from Iien\ e} Vi to V.. We suppose
that e = 4, and denote by ¥ an element of IT;¢ n\{e}Vi and by 7 the element of ;e (e} RY — D
associated with o.

We define by induction on k a family of functions hy, from Iien (e} Vi to TeU [0, kx6) — D.

and prove by induction on k that
P Vo#'Vi<kxé [p=17"on[0,t]] = hi(B)(t) = hi(2')(1)]

For k = 1 we define hy by:
Vo € ienge)Vi V€ Te U [0,6), h(D)(t) = finit(t). Clearly Py holds.
Suppose we have hj function Il ngeVi to Te U [0,k % §) — D, which verifies P,. We
define hi41 by:
ift € T,U[0,k*6) hipa(®)(t) = Re(D)(t).
ift € T.U[k*6,(k+1)*8) hppa()(t) = f(he(D)(t = 6),0(t — 6))-
Clearly P; implies Pry1
The function h from I;en(e) Vi to Ve is defined by:
Vt € T., h()(t) = hi(D)(t) where k | t € [(k - 1) x 6,k *6)
The causality of k follows from the properties P;. O

Proposition 2 : If M is a temporal automaton (I,S,0,T) then there exists a unique causal
function from IliefVi to M.esuoV. which satisfies the transductions equations.

Proof : We must show that there is a function F from I;erVi to HeesuoVe which sat-
isfies the equations of the transductions. This means that if we have the transduction
(e, A, 8, finit, f) we want:

Vo € MieVi Vt € [0,6) N Te Fe(D)(t) = finit(t)
VEe T, t> 6 Fu(0)(t) = f(Fa,(0)(t — 8), For(8)(t — 6),...) where Fe represents
the projection of F on V..
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First we need to introduce a function ord from the set of entities 7 U S U O to N. This
function will have the property that ord(e) = sup{ord(e’), e’ € D°(e)} + 1. It is possible to
define such a function because D° does not have any cycles.

Let us show how. We define the family of functions d, by:

do(e) =0 if D°(e) = B; do(e) = w otherwise.

dny1(€) = dn(e) if du(e) # w

dnya1(e) =n + 1if Ve EDO(e)d (¢') # w and dn(e) = w

dn+1(e) = w otherwise.
We show that Ve 3n | d,(e) # w. Let us suppose the contrary. Then for one entity e we have
Vn € Nd,(e) = w. Then Yn3a(n) | a(n) € D°(e) and dn-1(a(n)) = w. But D°(e) is finite so
3a; € D°(e) | Yn3k > n | di(a1) = w. So according to the definition of the family d,, we have
Vn d.(a;1) = w. If we iterate the same demonstration for a; than for e = ag, we can construct

a sequence (ag, a,az,..) | Vi aiy1 € D°(a;). So Vi {aiy1,aiy2,..} C A%a;). But A%(e) is

finite (included in A(e)). So there must be a; = a;,7 < j. But thena; =q; € € A%a;) which is
impossible. So we have demonstrated that Yen, | d,. () # w. We define ord(e) = dx (e). So
if ord(e) = k > 0 then by the definition of d,, we have ord(e) = sup{ord(e’), ¢’ € Do( )} +1.

Now we will prove that Ve € SUO there is a causal function from IL;e;V; to aea(e)u{el 1Va
which satisfies the equations of the transductions. We know that (A(e)U {e})\ I = A is
finite because M is a temporal automaton. So 364 > 0 |Va € A | 6, # 0 we have 64 < 6,.

We will prove by induction on k that:
Vk > 1 3f2 a causal function from Il;e;V; to Maca(ToN[0,k*64) — D,) which satisfies the
equations of the transductions.

In the case k = 1:
1f’D°(a) Di.e. ord(a) = 0 we define f by Vi € Iie[V; Vi € [0,64)NTo fLL(8)(t) = finita (1)-
ff is causal because of this definition.
if ord(a) = 1 Vb € D°(a) either b € I or we have just defined f{,. So we can define

Yt € [0,64) N Ty fAD)(E) = falrs, (9)(2), 6, (D)(2), - ) Where r3(9)(t) = vp(t) if b € I and
ro(0)(t) = f1i(D)(¢) if b € A. By this definition f{1 is causal and satisfies the equations of
the transductions.

if ord(a) = 2 we can iterate the same reasoning and define f{.

As A is finite 3K | Va € A K > ord(a). So after a finite number of iterations we define a
causal function f# from IL;csV; to Maea(Ta N [0,64) — D,) which satisfies the equations of
the transductions.

Now suppose that this is true for k. We define fk ; in the following way:
if ord(a) =0,Vbe D(a) we denote by ry(%), vy if b € T or fi(0) if b€ A. Vo € eV

if t € [0, k*5A) NT, fk+1 (®)(t) = FA(B)(2)
fte [k*aA,(k’*' 1) *6A) ﬂT N [0 é )fk+la(v)(t) - fzmta( )

if £ € [k * 64, (k+1)%8a) NTaN [8,00) s, (B)(1) = falr, @)t = &), 1, (B) (2 = o), -.)-
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As 6, > 64,1t —6, < k*64. This definition is causal and satisfies the transductions equations
since all its components do.

If ord(a) =1, then Vb € Do(a) either b € I and we denote r,(9) = v, or ord(b) = 0 and
we denote by 7 the function fZ 41, that we have just defined.
if t € [0,k*64) N Tu fil,, (9)(t) = fiL(9)(2)
i1 € [k * 64, (k+ 1)+ 64) N T, fr, (5)(8) = Fulrn)(0), T (O)(0), ).
This definition implies that f¢\, is causal and satisfies the transductions equations.
As in the definition of f{# we can iterate this construction on the value of ord. We will stop
because A is finite.
So we can define the function fg,.

So by induction we have Yk > 1 3f# a causal function from Ilie/V; to Iaea(Ta N[0, & *
§4) — D,) which satisfies the equations of the transductions.

We will now construct f4 a causal function from IV to Il,e4V, which satisfies the
equations of the transductions. We define f4 by:
Vo € H,'GIV;' Vit € [(k - 1) * 5A, k * 6A)
FA@)) = fE(B)()

This definition implies that f4 is causal and that it satisfies the transductions equations
because of the construction of the f{.

Let us show now that if e € (A(a) U {a} \ I) N (A(b) U {b} \ I) then we have fA =
where A = A(a)U {a} \ I and B = A(b) U {b} \ I. Let us suppose the contrary. Then
3o € MiesV; 3o | fA(D0)(to) # f2 (Y0)(to)-

But we have a transduction (e, D(e), b, finit., fe) and f4 and fEB satify the equation of
that transduction.

if 6, = 0 we have f.(f4(vo)(to), ---) # fe(fB(v0)(to),...). So Je' € D°(e) 3t' < to | f4(%0)(t') #
B(9)(t') and ord(e’ ) < ord(e).
1f5 > 0 we have f.(f4(vo)(to—be), ...) # fe(fE (v FB(Go)(to— &e), ...). So Je' € D(e) 3t' < to— 6. |
Fa(Bo)(t') # £ (Bo)(¥) -

Note that %, < 8. is impossible because f4 and fB are both then equal to fini..

If we have 6, = min(4,68) then we have show that:
if 3e € AN B such that

3o € MierVi 3to | £(%0)(to) # £2 (o) (to)
then 3¢’ € AN B 3t such that either ord(e’) < ord(e) or ty < to — & and fZ(v%o)(tp) #
£ (90)(to)
We can iterate and construct an infinite sequence. But as ord has an upper bound on
A U B we must decrease 1o by at least § an infinite number of time. So the time should be
negative which is impossible. So we have f# = fE.

Now we can construct F by defining F, = fA()4{e}, Then F is a causal function which
satisfies the equations of the transductions since the functions f4 do.
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We can prove that F is unique with the same arguments used to prove that fA=fBo

Proposition 3 : If My = (I1,04, f1) and M; = (I3, 04, f2) are two causal systems and W
is a wiring over My, M, such thate e’ € W implies e € Oy and €' € I, then the system
induced by the wiring W over My and M, is a causal system.

Proof : Let O be the subset of output entities of M; that are connected to Ma.
Let I be the subset of input entities of M, that are connected from M;.

We will prove that (I; U (I2\I),51US: U1, (01 \ 0)U 0;) and a causal function defined
in terms of fi,fa, and the connections is a causal system.

S, is related I; U (I \ I) by a causal function since it is to I; by fi.

S,UTIisrelated to , =TU(I;\I)bya causal function fs, but I is related to O by the
connections functions and O is related to I; by f1. So, Sy U I is related to I; U (I2\I) by a
causal function.

01\ O is related to I; by fi.

O, is related to I, = TU (I \ I) by fz so with the same argument as for S,, O3 is related
to I; U (I3 \ I) by a causal function. O

Proposition 4 : If M; = (I, 51,01, T1) and M, = (I3, 83,02, T;) are two temporal au-
tomata and W is a wiring over My, My, such thate >e' € W implies e € Oy and €' € I
then the system induced by the wiring W over My and M3 1s a temporal automaton.

Proof : Let O be the subset of output entities of M; that are connected to M.
Let I be the subset of input entities of M; that are connected from M,;.

We will prove that (I;U(I2\I), $1US;UTUO, (0:\0)U0;) with appropriate transductions
is a temporal automaton equivalent to the system induced by the wiring of M; and M2.
Fore€ E=5,US;UIUOU(0;\O)UO; we take the following transduction:
-if e € §; U S U Oy U O, the same transduction as in M1 or M2,

-ife e I then 3o € O | 0 b e and we take the transduction (e, {0},0,0,1d) where id is the
identity function.

It is obvious that Ve € E, A(e) is finite.

Let us now show that Ve € E,e & A%(e).
If e € S; U O, this follows from the fact that M, is a temporal automaton.
If e € I then D°(e) = {0} and so A%(e) = {0} U A%(0) which is included in ; U 5; U {0} so
e & A%e). .
If e € S, UO; then A%e) = A}y, (e) U UieInAg,Z(e)Ao(i)- But e ¢ A}y, (e) because M; is a
temporal automaton and U,-emA%h(e)Ao(i) C (I; U S U0), so e & A%e).




The system we have defined with our new transductions is then a temporal automaton.
Furthermore it is equivalent to the system induced by the wiring of M; and M,. Each entity
of $; U S, UO; UO,; has the same transduction and if 7 is an entity of I its transduction
implies that V¢t € T; v;(t) = T,(t) which is exactly the behavior induced by the connection.
0

Proposition 5 : Let My,M,,...,M, be n temporal automata and W a wiring over M, M,,....M,
such that Ve if e b e’ € W then e has a durational transduction. The system induced by W
over My,M,,...,M, is a temporal automaton.

Proof : We denote by O; the set of output entities of M; which are connected to other
entities and by I; the set of input entities of M; which are connected from other entities.

We will prove that | J(S: UO; UL) U | J(O:\ 0))) is related to

=1 i=1
n

\JT: \ ;) by a causal function.
i=1

We will show that the system (| J(Li \ T), |J(S: U O: U I;),|J(0: \ 0;)) and the sets of

=1 =1 i=1

n
transductions of M; and the transductions Ve € | JI; (e,{€'},0,0,1d), where ¢’ is such that

=1
n

e € UO; and € b e is a temporal automaton.
1=1

For this system if Ve € | J(S; U O: U I;) we have A(e) finite and e ¢ A°(e) then by
=1
definition the system is a temporal automaton.

Let us show that the case where Vo; € O;, o; has a durational transduction is a particular

case where this property holds.

As the number of connection is finite, Ve € | J(S; U O; U I;) the cardinality of A(e) is at

=1
most increased by (number of connections)*maz,cyp,(cardinal(A.(e)))-

n
Now Ve € | JI; | €' be we have A%(e) = {e'} because A%(e’) = @ since €’ has a durational
1=1
transduction.

Then Ve € | J(S:U0;), if e € S;U0;, A%(e) is equal to the union of A};.(e) and eventually

1=1

a subset of {a € I;,a’ € U;0; | @’ ba}. So e & A%(e).
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n

We have proof than the system U(I,- \ L), U(S; uO;U L), U(O; \ 0;)) and the sets of

i=1 i=1 i=1

transductions of M; and the transductions Ve € | JI; (e,{¢'},0,0,id) (where ¢’ is such that

=1
n

e’ € [ JO; and €' 1> e) verifies the definition of a temporal automaton.O
i=1

Appendix B

In this appendix we present the temporal automaton implementing the digital watch de-
scribed in section 5.2.

There are 5 input entities which are all defined on continous time ( time structure equal
to R*), a,b,c,d and power. The first four represent the status of the four buttons and their
value will be 1 if the button is depressed and 0 otherwise. The last one is the the information
from the battery and can have 3 different values {on,weak, dead}.

Each of the internal and output entities will be defined on N, = {kx €| k € N} where
€ = 10 milliseconds is the precision of the watch and the minimal time between changes in
the watch.

There are 7 output entities. The delay of all the output entities will be 0 since as you will
see they are only transcriptions of internal entities. Four of the output entities will be orders
for the display of the four small areas of the watch. There are all, al2, chime and d_power.
The value of the first three will be {on, of f,none} and for the forth {good, weak,none}. The
fifth output is light which will take its value in {on,of f}, the sixth is beeper with values in
{beep, silent} and the last is display which will represent what to display on the main area
of the watch.

The internal entities can be divided in 4 groups. The first contains entities which keep
track of the different modes of the watch. These entities are main_mode,update_mode,
time_mode, chrono_mode, updall _mode and updal2_mode.

The second group contains alarml_stat,alarm2_stat and chime_stat which encode the
status of these features. Their domain will be {enabled, disabled}.

The third group is used to implement the different time-out behaviors. Such entities will
be 2s,30s and 2min. Their domain will be R.

The last group contains entities which are data. They are time, date, all time, al2_time
and chrono. Their domain is R and they will be used by the output entity display to draw
the main area of the watch.

All the internal entities will have N, as time structure.
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The entity main_mode will encode the mode of the watch. Its possible values are
{tim, dat,update,alarml, alarm2, updalarml, updalarm2, chime, stopwatch}. It transduc-
tion is (main_mode, {main_mode, a, b, c,d, 2s, 2min, update_mode, updall_mode, updal2_mode},
€, (0,tim), f). The function f of 9 variables m, a, b, ¢, d, 2s,2min, upm,uml,um?2 (m,upm,
uml, um2 are the abbreviations for main_mode, update_mode, updall_mode and updal2._mode)
is defined by:

f(m,a,b,c,d,2s,2min,upm,uml,um?2) =

dat m=timAd=1

tim m=datAd=1

tim m ¢ {tim,update} A 2min =0
update m=timAc=1A2s=0

tim m = update ANb=1

tim m = update A upm = mode A ¢ = 1
alarml m=timAa=1

updalarml m =alarml Ac=1

alarml m = updalarml Ab=1

alarml m = updalarml Auml =minAc=1
alarm?2 m = alarml Aa=1

updalarm2 m =alarm2Ac=1
alarm?2 m = updalarm2 Ab=1

alarm?2 m = updalarm2 Aum2 =minAc=1
chime m=alarm2Aa=1
stopwatch m =chimeAa=1
tim m = stopwatch Aa =1
m otherwise
The notation:
f(...)= vl ¢l
v2 2

means that

f(...)= ifcl thenwvl
elseif c2 then v2
elseif ...then ...

The entity 2min is used to implement the time-out that forces to return in the time mode.
Its transduction is (2min, {main_mode, a,d,2min},¢, (0,0),g). The function g is defined by:

g(m,a,d,2min) = 120—e¢ m=timAd=1
120— ¢ m € {tim,alarml,alarm2,chime}Aa =1
2min —e 2min >0
2min otherwise
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The entity 2s is almost similar. Its transduction is (2s, {main_mode, c,2s}, ¢, (0,2), h)
where h is:

h(m,c,2é)= 2s—€ 25<2Ac=1Am=tim

2—c¢
2

m=timAc=1
otherwise

The entity update_mode encodes what unit is updated by an event d. Its values are
{none, second, min, 10min, hour, month, dat, day, year, mode}. Its transduction is (update_mode,
{main_mode, b, c, update_mode}, €, (0,none), k). The function k is defined by:

k(m,b,c,upm) = none m # update
none b=1
second m = update A upm = none
min upm = second Ac=1
10min upm=minAc=1
hour upm=10minAc=1
month upm = hour Ac=1
dat upm = monthAc=1
day upm =dat Ac=1
year upm=dayAc=1
mode upm =year Ac=1
upm  otherwise

The value of the entity {2me is the current time calculated by the watch. Its transduction
is (time, {d, update_mode, time}, ¢, (0,0),!) where ! is the following function:

I(d,upm,time) = mod + (time, 1, 60)

mod + (time, 60, 600)
mod + (ttme, 600, 3600)
mod + (time, 3600, 86400)

mod(time + €, 86400)

upm = second Ad =1
upm =minAd =1
upm = 10min Ad =1
upm = hour Ad =1
otherwise

The function mod is the usual modulo function and mod+(z, a, b) = bxdiv(z, b)+mod(z+a,D)

where div is the integer division.

The entity date is similar to tzme but encodes the date. We suppose we have functions
add_day,add week_day,add_month,add_year,add_a_day that given a date return a new date
incremented by a day, a day of the week, a month, an year or a day and a day of the week.
The transduction of date is (date, {d, update_mode, time, date}, ¢, (0,0),11) with:

[1(d, upm,time,date) = add_day(date)
add_week_day(date)
add_month(date)
add_year(date)
add_a_day(date)
date
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upm =dayANd=1
upm = month Ad =1
upm = year Ad =1
time = 86400 — €
otherwise




The entity time_mode keeps track of how to display the time. Its value are {24h,am/pm}.
Its transduction is (time_mode, {d, update.mode, time_mode}, €, (0,24h),12) with:

12(d,upm,tm) = 24h upm = mode Ad =1 Atm = am/pm
am/pm upm = mode Ad=1Atm = 24h
tm otherwise

The entity alarm1_stat is very simple. Its transduction is (alarml_stat, {main_mode, d.
alarml_stat}, ¢, (0, disabled), 13) with:

I13(m,d,alls) = enabled m = alarml Ad=1Aalls = disabled
disabled m = alarml Ad =1 A alls = enabled
alls otherwise '

The entities alarm?2_stat and chime_stat are similar except that they are for the second
alarm and chime mode.

The entity updall_mode is quite identical to update_mode but simpler. Its values are
{none, hour,10min, min}, transduction is (updall_mode, {main_mode, c, updall_mode}, e,
(0,none), 14) with:

l4(m, c,updallm) = hour m = alarmlAc=1
none updallm =minAc=1
none m # updalarml
10min  updallm = hour Ac=1
min updallm = 10min Ac=1

| updallm otherwise

The entity updal2_mode is identical to updall_mode for the second alarm.

The entity alarm1_time encodes the time of the first alarm and has transduction (alarml_f2me,
{updall _mode, d, alarm1_time}, ¢, (0,0),15) with:

I15(uml, d,allt) = mod + (allt,3600,86400) uml = hour Ad=1
mod + (allt,600,3600) uml =10minAd =1
mod + (allt, 60, 600) uml =minAd=1
allt otherwise

The entity alarm2_time is similar to alarml_time.

The entity chrono_mode indicates whether or not the chronograph is running and has
value in {run,of f}. Its transduction is (chrono.mode, {main_mode, b,d, chrono_mode}, ¢,

(0,01 f),16) with:

16(m,b,d,chrm) = run m = stopwatch Ab=1A chrm = of f
of f m = stopwatch Ab= 1A chrm = run
of f m = stopwatch Ad =1

chrono_mode otherwise
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The entity chrono keeps track of the chronograph’s time. Its transduction is (chrono,
{main_mode, d, chrono_mode, chrono}, e, (0,0),17) with:

I7(m,d, chrm,chrono) = 0 m = stopwatch Ad =1
chrono 4+ ¢ m = stopwatch Ab=1A chrm = of f
chrono m = stopwatch Ab=1A chrm = run
chrono chrm = of f

chrono + ¢ chrm = run

The entity 30s indicates how long the beeper must beep. Its transduction is (30s, {time,
alarml_time, alarm2_time, alarml_stat, alarm2_stat, a, b, c, d,30s}, «, (0,0),8) with:

18(time, allt, al2t,alls, al2s,a,b,c,d, 30s) =

30 time = allt A alls = enabled
30 time = al2t A al2s = enabled
0 a=1Vb=1Ve=1Vd=1
30s —¢ 30s>0

0 otherwise

We can now present the output entities. Four of them are quite similar and rather simple:
d_power, all,al2 and chime display in the four small areas of the watch. The transduction
of d_power is (d-power, {power}, 0, 0, {(on, good), (weak,weak), (dead, none)}). The trans-
duction of all is (all, {power, alarml_stat},0,0,19) with:

19(power,alls) = none power = dead
on alls = enabled
of f alsl = disabled

The transduction of al2 and chime are almost similar and are omitted.

The entity light is on if the light of the watch has been switched on. Its transduction is
(light, 0, { power, b}, 0, 0) with:

o(power,b) = off power = dead
on b=1
of f otherwise

The entity beeper uses 30s to beep at the right instant. Its transduction is (beeper,
{power, time, 30s, chime_stat},0,0, p) with:

p(power,time, alls, al2s,30s,chs) = silent power = dead
beep  chs = on A mod(time, 3600) € [0,2]
beep 30s #0

silent otherwise
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The last output entity display presents on the main area of the watch the appropriate
data. Its transduction is (display, {power, main_mode, time, date, update_mode, alarml time,
alarm2_time, chrono,time_mode}, 0,0, q) with:

¢(power, m,time, date, upm, allt,al2t,chrono,tm) = .

none power = dead

date m = dat

date upm € {month,date,day, year}
allt m € {alarml,updalarml}

al2t m € {alarm2, updalarm?2}
chrono m = stopwatch

display24h(time) tm = 24h
displayam/pm(time) tm = am/pm

This temporal automaton implements the digital watch described at the beginning of
this section.

Appendix C

Proposition 6 : A deterministic one-tape Turing machine (abbreviated DTM) can be mapped
onto a temporal automaton.

As a proof of proposition 6 we will present a temporal automaton which performs the
same computation as a one-tape deterministic Turing machine.

Let us take a DTM with the following features:

1. A finite set T of tape symbols, including a subset ¥ C T' of input symbols and a
distinguished blank symbol b € T\ %;

2. A finite set Q of states, including a distinguished start-state go and two distinguished
halt-states ¢, and gn; .

3. a transition function &: (Q \ {gy,¢n}) X' = Q@ x T’ x {-1,+1}.

We will construct a temporal automaton whose input is a string € £* and whose output
will be 0 € {yes,no} if the DTM will reach states g, or g, ( it will be equally possible to
output the result of the computation of DTM on z).

Let N be the time structure of all entities of the temporal automaton M.
M has one input ¢ whose domain D; is T U {end, reset}

M has 6 internal entities:
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- 8. whose domain is D,, = {read, compute}

- Stape Whose domain is D,,,,, =TI
- 8y, whose domain is D,, = Z

- Sins Whose domain is D,,, = Z
- Ssup Whose domain is D,,,, = Z

- 8 whose domain is D, = Q

M has one output o whose domain is D, = {L,yes,no}.
For all the internal and output entities the delay é will be the same and equal to 1.
The transduction of o is from s and its init value is L.

{ yes ifv,(t—1)=¢q,

(1) =< no ifv(t—1)=gq,

1  otherwise

The transduction of s, is from 7 and its init value is read.

) = compute if vi(t —1) = end
Yse\) =\ read ifvi(t —1) € U {reset}

This entity s. keeps the state of M and allows to alternate between computation and reading
a string of input.

Let us now bring in some notations to specify the other entities more easily. At first a
few functions on I'* (set of the finite lists of elements € I'):

f :NxI'*->T f(n,1) return the n** element of

add— :IT'xI*->T add — (e,!) return the list with head e and
tail {

add+ :T'xI™—>T add + (e, 1) return the list with last element

e and beginning by !
repl N XTI xI* =T repl(n,e,l) return a list I’ identical to [
except that the n** element of I’ is e.

Now a few abbreviations:
i =vi(t — 1), tape = vy, (t = 1), k=0, (t 1) — v, (t —1)+1,
Se =0, (t—1)
6 = [6(v8(t - l)a f(k7tape))]1
bz = [6(vs(t — 1), f(k,tape))]
b = [8(va(t — 1), £ (s tape)
where [ ]; return the ** element of a tuple.
At last a few notations for conditions:
Ch :(sc = compute) A (vs(t — 1) & {qy,qx})
Cz (63 =1) A (v,,(t — 1) = v,,,,(t — 1))
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C3 :(63 = =1) A (vs,(t — 1) = vy, (t — 1))
The init value of s, is 1 and its transduction is:

1 if s, = read or ¢ = reset
v, (t — 1) + 65 if s. = compute and i # reset

onlt) = {

The init value of s;,s is 1 and its transduction is :

1 if (sc = read) V (¢ = reset)
Upin, (1) = { Uiy (t —1) = 1 if (s = compute) A (i # reset) A Cs
Vg, (T — 1) otherwise

The init value of s,,, is 0 and its transduction is :

0 if i = reset
) v (t—=1) 41 if (sc = read) A (i # reset)
Usqup(t) = Vs,u,(t — 1) + 1 if (s, = compute) A (i # reset) A Cy
Vst — 1) otherwise

At each time s, represents the position of the reading head of the DTM, s;,s the position
of the first element of sipe and s, the position of the last element of sigpe On the infinite
tape of the DTM.

The init value of sy is () the empty list and its transduction is:

[ () if 2 = reset
add + (i, tape) if (sc = read) A (i # reset)
add + (b,repl(k, b3,tape)) if Cy A (i # reset) A Cy
Vsiape() =\ add — (b, repl(k, 65, tape)) if Cy A (i # reset) A Cs
repl(k, 62, tape) if Cy A (2 # reset) A ~Cy A =C3

| tape otherwise

The init value of s is ¢o and its transduction is:

9 if s, = read
v’(t) = 61 if Cl

v,(t — 1) otherwise

The machine M which we have constructed can be used to compute the algorithm of the
DTM. For this, put into its input the string = of £* ended by a stop. M will at first save
the input string and then compute the algorithm of the DTM. If the DTM would end its
computation then M give as output whether or not the DTM would accept z as a element of
the language that the DTM recognizes. M can also be reset to undertake a new computation
by sending to the input a reset.0
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